• Users Online: 636
  • Print this page
  • Email this page
REVIEW ARTICLE
Year : 2023  |  Volume : 7  |  Issue : 2  |  Page : 101-108

Left Ventricular Strain in Heart Failure with Preserved Ejection Fraction


Department of Cardiology, Institute of Heart and Vascular Diseases, Jaipur Golden Hospital, New Delhi, India

Correspondence Address:
Prof. Jagdish Chander Mohan
A51, Hauz Khas, New Delhi - 110 016
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jiae.jiae_22_23

Rights and Permissions

Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome of effort intolerance based on structural and functional abnormalities of the cardiovascular system (CVS). Its prevalence is increasing progressively in comparison to that of heart failure with reduced ejection fraction due to aging, obesity, metabolic stress, and hypertension. Multiple domains of the CVS and peripheral organs have reduced reserve capacity and increased stiffness in patients with HFpEF. This high-gain CVS exhibits increased filling pressures and reduced filling volumes under stress despite the left ventricular ejection fraction, commonly estimated parameter of contractile performance, being normal, i.e., >50%. The cost of increasing cardiac output in terms of left ventricular filling pressures is increased and their relationship shows an upward and more left-directed slope due to reduced ventricular and arterial compliance. At the tissue level, there is myocytic hypertrophy and increased extracellular matrix with capillary rarefaction. There are many phenogroups of HFpEF based on the heart's ability to secrete natriuretic peptides, degree of dysmetabolism, age, renal function, body fat, rhythm, underlying etiology, and subclinical systolic dysfunction. The left ventricle may be pressure-loaded, volume-loaded, or have equipoise with regard to remodeling. Myocardial performance estimated by parameters other than those based on distance or volume displacement may be abnormal in more than half of the patients underlying the presence of subtle systolic dysfunction. This review looks at myocardial performance and characteristics in HFpEF by deformation imaging using acoustic speckle tracking and its diagnostic and prognostic significance. Research points toward the utility of global longitudinal strain in early detection, biological characterization, and risk stratification of HFpEF. Echocardiographic speckle-tracking-based longitudinal strain analysis represents a method of relatively high value and for sensitive phenotyping of HFpEF which is yet to be utilized optimally. Other dimensions of strain, although extensively studied in HFpEF, do not add much value. The focus is on systolic deformation since there is limited utility of diastolic strain and its rate.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed562    
    Printed44    
    Emailed0    
    PDF Downloaded53    
    Comments [Add]    

Recommend this journal